Description
A scatterometer transmits radar pulses and receives backscattered energy, the intensity of which depends on the roughness and dielectric properties of a particular target. Scatterometers were originally designed to measure oceanic surface winds, where the amount of backscatter depends on two factors – the size of the surface ripples on the ocean, and their orientation with respect to the propagation direction of the pulse of radiation transmitted by the scatterometer. The first is dependent on wind stress, and hence wind speed at the surface, while the second is related to wind direction. As a result, measurements by scatterometers may be used to derive both wind speed and direction.
The main aim of these instruments is to achieve high accuracy measurements of wind vectors (speed and direction), so resolution is of secondary importance. (They generally produce wind maps with a resolution of order 25–50 km). Because scatterometers operate at microwave wavelengths, the measurements are available irrespective of weather conditions.
Spaceborne scatterometers have provided continuous synoptic microwave coverage of the Earth for nearly two decades, starting with the ERS series in 1991, NSCAT on ADEOS, SeaWinds on QuikSCAT, and more recently ASCAT on MetOp. The ERS and NSCAT instruments employed a fan-beam (multi-incidence) wind retrieval technique, whereas QuikSCAT employs a conically scanning (fixed incidence) technique. Increases in swath width capability now mean that a single instrument can provide around 90% coverage of global oceans on a daily basis. |